Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 887
Filtrar
1.
Biol Pharm Bull ; 47(4): 861-867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644196

RESUMO

Taguchi et al. reported that postmenstrual age (PMA) is a promising factor in describing and understanding the developmental change of caffeine (CAF) clearance. The aim of the present study was to quantify how developmental changes occur and to determine the effect of the length of the gestational period on CAF clearance. We performed a nonlinear mixed effect model (NONMEM) analysis and evaluated the fit of six models. A total of 115 samples were obtained from 52 patients with a mean age of 34.3 ± 18.2 d. The median values of gestational age (GA) and postnatal age (PNA) were 196 and 31 d, respectively. Serum CAF levels corrected for dose per body surface area (BSA) (C/D ratioBSA) were dependent on PMA rather than PNA, which supports the findings of a previous study. NONMEM analysis provided the following final model of oral clearance: CL/F = 0.00603∙WT∙∙0.877GA ≤ 196 L/h. This model takes into account developmental changes during prenatal and postnatal periods separately. The model successfully described the variation in clearance of CAF. Our findings suggest that the dosage of CAF in preterm infants should be determined based not only on body weight (WT) but also on both PNA and GA.


Assuntos
Cafeína , Idade Gestacional , Recém-Nascido Prematuro , Modelos Biológicos , Humanos , Cafeína/sangue , Cafeína/farmacocinética , Cafeína/administração & dosagem , Feminino , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Recém-Nascido Prematuro/sangue , Masculino , Gravidez , Estimulantes do Sistema Nervoso Central/sangue , Estimulantes do Sistema Nervoso Central/farmacocinética , Estimulantes do Sistema Nervoso Central/administração & dosagem
2.
Clin Pharmacol Ther ; 114(3): 693-703, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313955

RESUMO

Understanding cannabis-drug interactions is critical given regulatory changes that have increased access to and use of cannabis. Cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (Δ9-THC), the most abundant phytocannabinoids, are in vitro reversible and time-dependent (CBD only) inhibitors of several cytochrome P450 (CYP) enzymes. Cannabis extracts were used to evaluate quantitatively potential pharmacokinetic cannabinoid-drug interactions in 18 healthy adults. Participant received, in a randomized cross-over manner (separated by ≥ 1 week), a brownie containing (i) no cannabis extract (ethanol/placebo), (ii) CBD-dominant cannabis extract (640 mg CBD + 20 mg Δ9-THC), or (iii) Δ9-THC-dominant cannabis extract (20 mg Δ9-THC and no CBD). After 30 minutes, participants consumed a cytochrome P450 (CYP) drug cocktail consisting of caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A). Plasma and urine samples were collected (0-24 hours). The CBD + Δ9-THC brownie inhibited CYP2C19 > CYP2C9 > CYP3A > CYP1A2 (but not CYP2D6) activity, as evidenced by an increase in the geometric mean ratio of probe drug area under the plasma concentration-time curve (AUC) relative to placebo (AUCGMR ) of omeprazole, losartan, midazolam, and caffeine by 207%, 77%, 56%, and 39%, respectively. In contrast, the Δ9-THC brownie did not inhibit any of the CYPs. The CBD + Δ9-THC brownie increased Δ9-THC AUCGMR by 161%, consistent with CBD inhibiting CYP2C9-mediated oral Δ9-THC clearance. Except for caffeine, these interactions were well-predicted by our physiologically-based pharmacokinetic model (within 26% of observed interactions). Results can be used to help guide dose adjustment of drugs co-consumed with cannabis products and the dose of CBD in cannabis products to reduce interaction risk with Δ9-THC.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Adulto , Canabinoides/farmacologia , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C19 , Cafeína/farmacocinética , Midazolam/farmacocinética , Citocromo P-450 CYP3A , Losartan , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450 , Citocromo P-450 CYP2D6 , Interações Medicamentosas , Omeprazol/farmacocinética , Extratos Vegetais/farmacocinética , Dronabinol/farmacologia
3.
Br J Clin Pharmacol ; 89(7): 2208-2215, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36808638

RESUMO

AIMS: This clinical study was conducted to evaluate the impact of ritlecitinib on the pharmacokinetics of caffeine, a cytochrome P450 1A2 (CYP1A2) substrate. METHODS: In this single-centre, single-arm, open-label, fixed-sequence study, healthy participants received a single 100-mg dose of caffeine on 2 separate occasions: on Day 1 of Period 1 as monotherapy and on Day 8 of Period 2 after oral administration of ritlecitinib 200 mg once daily for 8 days. Serial blood samples were collected and analysed using a validated liquid chromatography-mass spectrometry assay. Pharmacokinetic parameters were estimated by using a noncompartmental method. Safety was monitored by physical examination, vital signs, electrocardiograms and laboratory assessments. RESULTS: Twelve participants were enrolled and completed the study. Coadministration of caffeine 100 mg in the presence of steady-state levels of ritlecitinib (200 mg once daily) increased caffeine exposure compared with caffeine given alone. Area under the curve to infinity and maximum concentration of caffeine increased by approximately 165 and 10%, respectively, when coadministered with ritlecitinib. The ratios of the adjusted geometric means (90% confidence interval) for caffeine area under the curve to infinity and maximum concentration were 265.14% (234.12-300.26%) and 109.74% (103.90-15.91%), respectively, when caffeine was coadministered with steady-state ritlecitinib (test) compared with its administration alone (reference). Multiple doses of ritlecitinib when coadministered with a single dose of caffeine were generally safe and well tolerated in healthy participants. CONCLUSION: Ritlecitinib is a moderate inhibitor of CYP1A2 and can increase systemic exposures of CYP1A2 substrates.


Assuntos
Cafeína , Citocromo P-450 CYP1A2 , Humanos , Cafeína/farmacocinética , Citocromo P-450 CYP1A2/metabolismo , Voluntários Saudáveis , Interações Medicamentosas , Área Sob a Curva
4.
J Clin Psychopharmacol ; 43(2): 113-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36700734

RESUMO

PURPOSE/BACKGROUND: Glycine transporter-1 inhibitors may ameliorate cognitive deficits in schizophrenia. This study evaluated potential drug-drug interactions with the glycine transporter-1 inhibitor BI 425809. METHODS/PROCEDURES: Interactions with cytochromes P450 (CYP) and P-glycoprotein (P-gp) were assessed in in vitro assays using human hepatocytes and Caco-2 cells, respectively. Pharmacokinetic characteristics of probe drugs were subsequently assessed in a Phase I, open-label, single-sequence crossover study in healthy male participants. Participants received a probe-drug cocktail containing midazolam (CYP3A4), warfarin (CYP2C9), and omeprazole (CYP2C19) and a separate dose of digoxin (P-gp), alone and on a background of steady-state BI 425809 25 mg once daily in 2 treatment periods. Adverse events were monitored. FINDINGS/RESULTS: In vitro assays revealed concentration-dependent induction of CYP3A4 and inhibition of P-gp by BI 425809. In the clinical study, 12 of 13 participants completed both periods. With BI 425809, area under the plasma concentration curve from administration to the last measurement (AUC 0-tz ) and maximum plasma concentration ( Cmax ) for midazolam were lower than when administered alone. Adjusted geometric mean ratios (90% confidence interval) were 70.6% (63.9%-78.1%) for AUC 0-tz and 77.6% (67.3%-89.4%) for Cmax . For warfarin and digoxin, AUC 0-tz and Cmax were similar with and without BI 425809. For omeprazole, BI 425809 slightly reduced AUC 0-tz but not Cmax versus omeprazole alone. No new safety signals were identified. IMPLICATIONS/CONCLUSIONS: These findings indicate induction of CYP3A4 by once-daily BI 425809 25 mg (the assumed highest therapeutic dose) and no meaningful effects on CYP2C9, CYP2C19, or P-gp in vivo.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Midazolam , Humanos , Masculino , Citocromo P-450 CYP2C19 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Citocromo P-450 CYP3A , Varfarina , Estudos Cross-Over , Citocromo P-450 CYP2C9 , Células CACO-2 , Cafeína/farmacocinética , Interações Medicamentosas , Sistema Enzimático do Citocromo P-450/metabolismo , Omeprazol/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Digoxina/farmacocinética , Área Sob a Curva
5.
Br J Clin Pharmacol ; 89(3): 1046-1055, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36131603

RESUMO

BACKGROUND: Preclinical studies showed that capmatinib reversibly inhibits cytochrome P450 (CYP) 3A4 and CYP1A2 in a time-dependent manner. In this study, we evaluated the effect of capmatinib on the exposure of sensitive substrates of CYP3A (midazolam) and CYP1A2 (caffeine) in patients with mesenchymal-epithelial transition (MET)-dysregulated solid tumours. Besides pharmacokinetics, we assessed treatment response and safety. METHODS: This open-label, multicentre, single-sequence study consisted of a molecular prescreening period, a screening/baseline period of ≤28 days and a drug-drug interaction (DDI) phase of 12 days. On day 1 of the DDI phase, 37 patients received a single oral dose of midazolam 2.5 mg and caffeine 100 mg as a two-drug cocktail. Capmatinib 400 mg bid was administered from day 4 on a continuous dosing schedule. On day 9 of the DDI phase, patients were re-exposed to midazolam and caffeine. After the DDI phase, patients received capmatinib on continuous 21-day cycles until disease progression at the discretion of the investigator. RESULTS: A 22% (90% confidence interval [CI] 7-38%) increase in the midazolam maximum plasma concentration (Cmax ) was noted when administered with capmatinib, but this was deemed not clinically meaningful. Co-administration with capmatinib resulted in 134% (90% CI 108-163%) and 122% (90% CI 95-153%) increases in the caffeine area under the plasma concentration-time curve from time zero to infinity (AUCinf ) and area under the plasma concentration-time curve from time zero to the last measurable point (AUClast ), respectively, with no change in Cmax . Adverse events were consistent with the known capmatinib safety profile. No new safety signals were reported in this study. CONCLUSION: The data from this study demonstrated that capmatinib is a moderate CYP1A2 inhibitor. Capmatinib administration did not cause any clinically relevant changes in midazolam exposure.


Assuntos
Cafeína , Citocromo P-450 CYP1A2 , Humanos , Citocromo P-450 CYP1A2/metabolismo , Cafeína/farmacocinética , Midazolam/farmacocinética , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Área Sob a Curva , Interações Medicamentosas
6.
Drug Metab Dispos ; 51(2): 199-204, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36328482

RESUMO

Licorice, the roots and rhizomes of Glycyrrhiza glabra L., has been used as a medicinal herb, herbal adjuvant, and flavoring agent since ancient times. Recently, licorice extracts have become popular as dietary supplements used by females to alleviate menopausal symptoms. Exposure to licorice products containing high levels of glycyrrhizic acid can cause hypokalemia, but independent from this effect, preclinical data indicate that licorice can inhibit certain cytochrome P450 (P450) enzymes. To evaluate whether clinically relevant pharmacokinetic interactions of licorice with P450 enzymes exist, a phase 1 clinical investigation was carried out using a licorice extract depleted in glycyrrhizic acid (content <1%) and a cocktail containing caffeine, tolbutamide, alprazolam, and dextromethorphan, which are probe substrates for the enzymes CYP1A2, CYP2C9, CYP3A4/5, and CYP2D6, respectively. The botanically authenticated and chemically standardized extract of roots from G. glabra was consumed by 14 healthy menopausal and postmenopausal female participants twice daily for 2 weeks. The pharmacokinetics of each probe drug were evaluated immediately before and after supplementation with the licorice extract. Comparison of the average areas under the time-concentration curves (AUCs) for each probe substrate in serum showed no significant changes from licorice consumption, whereas time to reach peak concentration for caffeine and elimination half-life for tolbutamide showed small changes. According to the US Food and Drug Administration guidance, which is based on changes in the AUC of each probe substrate drug, the investigated licorice extract should not cause any clinically relevant pharmacokinetic interactions with respect to CYP3A4/5, CYP2C9, CYP2D6, or CYP1A2. SIGNIFICANCE STATEMENT: Despite generally-recognized-as-safe status, the licorice species Glycyrrhiza glabra has been associated with some toxicity. Preclinical studies suggest that G. glabra might cause pharmacokinetic drug interactions by inhibiting several cytochrome P450 enzymes. This phase 1 clinical study addressed these concerns by evaluating clinically relevant effects with respect to CYP3A4/5, CYP2C9, CYP2D6, and CYP1A2. These results showed that a standardized G. glabra extract did not cause any clinically relevant pharmacokinetic drug interactions with four major cytochrome P450 enzymes.


Assuntos
Citocromo P-450 CYP1A2 , Glycyrrhiza , Humanos , Feminino , Citocromo P-450 CYP2D6 , Cafeína/farmacocinética , Citocromo P-450 CYP3A , Tolbutamida , Ácido Glicirrízico , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450 , Glycyrrhiza/química , Suplementos Nutricionais
7.
Sci Rep ; 12(1): 21825, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528753

RESUMO

Little is known about the impact of morphological disorders in distinct zones on metabolic zonation. It was described recently that periportal fibrosis did affect the expression of CYP proteins, a set of pericentrally located drug-metabolizing enzymes. Here, we investigated whether periportal steatosis might have a similar effect. Periportal steatosis was induced in C57BL6/J mice by feeding a high-fat diet with low methionine/choline content for either two or four weeks. Steatosis severity was quantified using image analysis. Triglycerides and CYP activity were quantified in photometric or fluorometric assay. The distribution of CYP3A4, CYP1A2, CYP2D6, and CYP2E1 was visualized by immunohistochemistry. Pharmacokinetic parameters of test drugs were determined after injecting a drug cocktail (caffeine, codeine, and midazolam). The dietary model resulted in moderate to severe mixed steatosis confined to periportal and midzonal areas. Periportal steatosis did not affect the zonal distribution of CYP expression but the activity of selected CYPs was associated with steatosis severity. Caffeine elimination was accelerated by microvesicular steatosis, whereas midazolam elimination was delayed in macrovesicular steatosis. In summary, periportal steatosis affected parameters of pericentrally located drug metabolism. This observation calls for further investigations of the highly complex interrelationship between steatosis and drug metabolism and underlying signaling mechanisms.


Assuntos
Fígado Gorduroso , Midazolam , Camundongos , Animais , Midazolam/farmacologia , Cafeína/farmacocinética , Taxa de Depuração Metabólica , Sistema Enzimático do Citocromo P-450/metabolismo
8.
Regul Toxicol Pharmacol ; 133: 105194, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690181

RESUMO

The deuterium kinetic isotope effect has been used to affect the cytochrome P450 metabolism of the deuterated versions of substances. This study compares the pharmacokinetics of caffeine, a Generally Recognized As Safe food and beverage ingredient, versus d9-caffeine, a potential caffeine alternative, and their respective metabolites at two dose levels in 20 healthy adults. A single dose of 50 mg or 250 mg of caffeine, or a molar-equivalent dose of d9-caffeine, were orally administered in solution with blood samples collected for up to 48 h post-dose. Plasma concentrations of parent and metabolites were analyzed using validated LC-MS/MS methods. Both d9-caffeine and caffeine were rapidly absorbed; however, d9-caffeine exhibited a higher (ca. 29%-43%) Cmax and 4-5-fold higher AUClast than caffeine, and lower Cmax, lower AUClast, and a 5-10-fold reduction in the relative exposure to the active metabolites of caffeine. Results were consistent in normal and rapid metabolizers, and both substances were well tolerated.


Assuntos
Cafeína , Adulto , Área Sob a Curva , Cafeína/análogos & derivados , Cafeína/farmacocinética , Cromatografia Líquida , Estudos Cross-Over , Sistema Enzimático do Citocromo P-450 , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Espectrometria de Massas em Tandem
9.
Clin Pharmacokinet ; 61(7): 1039-1055, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35570253

RESUMO

BACKGROUND: Activities of hepatic cytochrome P450 enzymes (CYPs) are relevant for hepatic clearance of drugs and known to be decreased in patients with liver cirrhosis. Several studies have reported the effect of liver cirrhosis on CYP activity, but the results are partially conflicting and for some CYPs lacking. OBJECTIVE: In this study, we aimed to investigate the CYP activity in patients with liver cirrhosis with different Child stages (A-C) using the Basel phenotyping cocktail approach. METHODS: We assessed the pharmacokinetics of the six compounds and their CYP-specific metabolites of the Basel phenotyping cocktail (CYP1A2: caffeine, CYP2B6: efavirenz, CYP2C9: flurbiprofen, CYP2C19: omeprazole, CYP2D6: metoprolol, CYP3A: midazolam) in patients with liver cirrhosis (n = 16 Child A cirrhosis, n = 15 Child B cirrhosis, n = 5 Child C cirrhosis) and matched control subjects (n = 12). RESULTS: While liver cirrhosis only marginally affected the pharmacokinetics of the low to moderate extraction drugs efavirenz and flurbiprofen, the elimination rate of caffeine was reduced by 51% in patients with Child C cirrhosis. For the moderate to high extraction drugs omeprazole, metoprolol, and midazolam, liver cirrhosis decreased the elimination rate by 75%, 37%, and 60%, respectively, increased exposure, and decreased the apparent systemic clearance (clearance/bioavailability). In patients with Child C cirrhosis, the metabolic ratio (ratio of the area under the plasma concentration-time curve from 0 to 24 h of the metabolite to the parent compound), a marker for CYP activity, decreased by 66%, 47%, 92%, 73%, and 43% for paraxanthine/caffeine (CYP1A2), 8-hydroxyefavirenz/efavirenz (CYP2B6), 5-hydroxyomeprazole/omeprazole (CYP2C19), α-hydroxymetoprolol/metoprolol (CYP2D6), and 1'-hydroxymidazolam/midazolam (CYP3A), respectively. In comparison, the metabolic ratio 4-hydroxyflurbiprofen/flurbiprofen (CYP2C9) remained unchanged. CONCLUSIONS: Liver cirrhosis affects the activity of CYP isoforms differently. This variability must be considered for dose adjustment of drugs in patients with liver cirrhosis. CLINICAL TRIAL REGISTRATION: NCT03337945.


Assuntos
Citocromo P-450 CYP1A2 , Flurbiprofeno , Cafeína/farmacocinética , Criança , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flurbiprofeno/farmacocinética , Humanos , Cirrose Hepática , Metoprolol , Midazolam/farmacocinética , Omeprazol
10.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163784

RESUMO

Caffeine, a common ingredient in energy drinks, crosses the blood-brain barrier easily, but the kinetics of caffeine across the blood-cerebrospinal fluid barrier (BCSFB) has not been investigated. Therefore, 127 autopsy cases (Group A, 30 patients, stimulant-detected group; and Group B, 97 patients, no stimulant detected group) were examined. In addition, a BCSFB model was constructed using human vascular endothelial cells and human choroid plexus epithelial cells separated by a filter, and the kinetics of caffeine in the BCSFB and the effects of 4-aminopyridine (4-AP), a neuroexcitatory agent, were studied. Caffeine concentrations in right heart blood (Rs) and cerebrospinal fluid (CSF) were compared in the autopsy cases: caffeine concentrations were higher in Rs than CSF in Group A compared to Group B. In the BCSFB model, caffeine and 4-AP were added to the upper layer, and the concentration in the lower layer of choroid plexus epithelial cells was measured. The CSF caffeine concentration was suppressed, depending on the 4-AP concentration. Histomorphological examination suggested that choroid plexus epithelial cells were involved in inhibiting the efflux of caffeine to the CSF. Thus, the simultaneous presence of stimulants and caffeine inhibits caffeine transfer across the BCSFB.


Assuntos
4-Aminopiridina/farmacologia , Cafeína/farmacocinética , Estimulantes do Sistema Nervoso Central/farmacologia , Líquido Cefalorraquidiano/química , Plexo Corióideo/química , Endotélio Vascular/química , Autopsia , Transporte Biológico , Barreira Hematoencefálica/química , Estudos de Casos e Controles , Células Cultivadas , Plexo Corióideo/citologia , Células Endoteliais/química , Células Endoteliais/citologia , Endotélio Vascular/citologia , Humanos , Modelos Biológicos
11.
Food Chem Toxicol ; 160: 112774, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974129

RESUMO

Altering caffeine's negative physiological effects and extending its duration of activity is an active area of research; however, deuteration as a means of achieving these goals is unexplored. Deuteration substitutes one or more of the hydrogen atoms of a substance with deuterium, a stable isotope of hydrogen that contains an extra neutron. Deuteration can potentially alter the metabolic profile of a substance, while maintaining its pharmacodynamic properties. d9-Caffeine is a deuterated isotopologue of caffeine with the nine hydrogens contained in the 1, 3, and 7 methyl groups of caffeine substituted with deuterium. d9-Caffeine may prove to be an alternative to caffeine that may be consumed with less frequency, at lower doses, and with less exposure to downstream active metabolites of caffeine. Characterization of d9-caffeine's genotoxic potential, pharmacodynamic, and pharmacokinetic behavior is critical in establishing how it may differ from caffeine. d9-Caffeine was non-genotoxic with and without metabolic activation in both a bacterial reverse mutation assay and a human mammalian cell micronucleus assay at concentrations up to the ICH concentration limits. d9-Caffeine exhibited a prolonged systemic and brain exposure time in rats as compared to caffeine following oral administration. The adenosine receptor antagonist potency of d9-caffeine was similar to caffeine.


Assuntos
Cafeína/farmacocinética , Administração Oral , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Encéfalo/metabolismo , Cafeína/administração & dosagem , Cafeína/sangue , Dano ao DNA/efeitos dos fármacos , Deutério/química , Deutério/metabolismo , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley
12.
Sci Rep ; 11(1): 19734, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611208

RESUMO

Sleep inertia is a disabling state of grogginess and impaired vigilance immediately upon awakening. The adenosine receptor antagonist, caffeine, is widely used to reduce sleep inertia symptoms, yet the initial, most severe impairments are hardly alleviated by post-awakening caffeine intake. To ameliorate this disabling state more potently, we developed an innovative, delayed, pulsatile-release caffeine formulation targeting an efficacious dose briefly before planned awakening. We comprehensively tested this formulation in two separate studies. First, we established the in vivo caffeine release profile in 10 young men. Subsequently, we investigated in placebo-controlled, double-blind, cross-over fashion the formulation's ability to improve sleep inertia in 22 sleep-restricted volunteers. Following oral administration of 160 mg caffeine at 22:30, we kept volunteers awake until 03:00, to increase sleep inertia symptoms upon scheduled awakening at 07:00. Immediately upon awakening, we quantified subjective state, psychomotor vigilance, cognitive performance, and followed the evolution of the cortisol awakening response. We also recorded standard polysomnography during nocturnal sleep and a 1-h nap opportunity at 08:00. Compared to placebo, the engineered caffeine formula accelerated the reaction time on the psychomotor vigilance task, increased positive and reduced negative affect scores, improved sleep inertia ratings, prolonged the cortisol awakening response, and delayed nap sleep latency one hour after scheduled awakening. Based on these findings, we conclude that this novel, pulsatile-release caffeine formulation facilitates the sleep-to-wake transition in sleep-restricted healthy adults. We propose that individuals suffering from disabling sleep inertia may benefit from this innovative approach.Trials registration: NCT04975360.


Assuntos
Cafeína/administração & dosagem , Sono/efeitos dos fármacos , Vigília , Adulto , Cafeína/farmacocinética , Emoções/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Hidrocortisona/administração & dosagem , Masculino , Polissonografia , Desempenho Psicomotor/efeitos dos fármacos , Fases do Sono , Fatores de Tempo , Vigília/efeitos dos fármacos , Adulto Jovem
13.
Nutrients ; 13(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578966

RESUMO

Nowadays, caffeine is one of the most commonly consumed substances, which presents in many plants and products. It has both positive and negative effects on the human body, and its activity concerns a variety of systems including the central nervous system, immune system, digestive system, respiratory system, urinary tract, etc. These effects are dependent on quantity, the type of product in which caffeine is contained, and also on the individual differences among people (sex, age, diet etc.). The main aim of this review was to collect, present, and analyze the available information including the latest discoveries on the impact of caffeine on human health and the functioning of human body systems, taking into account the role of caffeine in individual disease entities. We present both the positive and negative sides of caffeine consumption and the healing properties of this purine alkaloid in diseases such as asthma, Parkinson's disease, and others, not forgetting about the negative effects of excess caffeine (e.g., in people with hypertension, children, adolescents, and the elderly). In summary, we can conclude, however, that caffeine has a multi-directional influence on various organs of the human body, and because of its anti-oxidative properties, it was, and still is, an interesting topic for research studies including those aimed at developing new therapeutic strategies.


Assuntos
Cafeína/efeitos adversos , Cafeína/farmacologia , Adolescente , Adulto , Analgésicos , Animais , Antioxidantes , Cafeína/farmacocinética , Sistema Cardiovascular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central , Criança , Sistema Digestório/efeitos dos fármacos , Humanos , Sistema Imunitário/efeitos dos fármacos , Transtornos Mentais/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Receptores Purinérgicos P1 , Sistema Respiratório/efeitos dos fármacos , Sistema Urinário/efeitos dos fármacos
14.
Eur J Pharm Biopharm ; 167: 57-64, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273544

RESUMO

The absorption of topically applied substances is challenging due to the effective skin barrier. Encapsulation of substances into nanoparticles was expected to be promising to increase the bioavailability of topically applied products. Since nanoparticles cannot traverse the intact skin barrier, but penetrate into the hair follicles, they could be used to deliver substances via hair follicles, where the active is released and can translocate independently transfollicularly into the viable epidermis. In the present in vivo study, this effect was investigated for caffeine. Caffeine nanocrystals of two sizes, 206 nm and 694 nm, with equal amounts of caffeine were used to study caffeine serum concentration kinetics after topical application on 5 human volunteers. The study demonstrated that at early time points, the smaller nanocrystals were more effective in increasing the bioavailability of caffeine, whereas after 20 min, the serum concentration of caffeine was higher when caffeine was applied by larger nanocrystals. Caffeine was still detectable after 5 days. The area under the curve could be increased by 82% when the 694 nm nanocrystals were applied. Especially larger sized nanocrystals seem to be a promising type of nanoparticulate preparation to increase the bioavailability of topically applied drugs via the transfollicular penetration pathway.


Assuntos
Cafeína/administração & dosagem , Nanopartículas , Absorção Cutânea , Administração Cutânea , Adulto , Área Sob a Curva , Disponibilidade Biológica , Cafeína/farmacocinética , Folículo Piloso/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Pele/metabolismo , Fatores de Tempo
15.
Biol Pharm Bull ; 44(6): 762-770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078808

RESUMO

A cocktail study is an in vivo evaluation method to assess multiple CYP activities via a single trial and single administration of a cocktail drug that is a combination of multiple CYP substrates. However, multiple blood samples are required to evaluate the pharmacokinetics of a CYP probe drug. A limited-point sampling method is generally beneficial in clinical studies because of the simplified protocol and reduced participant burden. The aim of this study was to evaluate whether a limited-point plasma concentration analysis of CYP substrates in a cocktail drug could predict their area under the curve (AUC). We created prediction models of five CYP substrates (caffeine, losartan, omeprazole, dextromethorphan, and midazolam) using multiple linear regressions from the data of two cocktail studies, and then performed predictability analysis of these models using data derived from data in the co-administration with inducer (rifampicin) and inhibitors (fluvoxamine and cimetidine). For the administration of inhibitors, the AUC prediction accuracy (mean absolute error (MAE)) were <39.5% in Model 1 and <26.2% in Model 2 which were created using 1- and 4-point sampling data. MAE shows larger values in the administration of inducer in compared with the administration of inhibitors. The accuracy of the prediction in Model 2 could be acceptable for screening of inhibitions. MAE for caffeine, dextromethorphan, and midazolam were acceptable in the model that used 4 sampling points from all data. The use of this method could reduce the burden on the subject and make it possible to evaluate each AUC in a minimally invasive manner.


Assuntos
Área Sob a Curva , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Biológicos , Administração Oral , Adulto , Cafeína/sangue , Cafeína/farmacocinética , Dextrometorfano/sangue , Dextrometorfano/farmacocinética , Humanos , Losartan/sangue , Losartan/farmacocinética , Masculino , Midazolam/sangue , Midazolam/farmacocinética , Omeprazol/sangue , Omeprazol/farmacocinética , Adulto Jovem
16.
Clin Pharmacol Drug Dev ; 10(8): 824-839, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107166

RESUMO

Napabucasin is an orally administered reactive oxygen species generator that is bioactivated by the intracellular antioxidant nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1. Napabucasin induces cell death in cancer cells, including cancer stem cells. This phase 1 study (NCT03411122) evaluated napabucasin drug-drug interaction potential for 7 cytochrome P450 (CYP) enzymes and the breast cancer resistance protein transporter/organic anion transporter 3. Healthy volunteers who tolerated napabucasin during period 1 received probe drugs during period 2, and in period 3 received napabucasin (240 mg twice daily; days 1-11) plus a phenotyping cocktail containing omeprazole (CYP2C19), caffeine (CYP1A2), flurbiprofen (CYP2C9), bupropion (CYP2B6), dextromethorphan (CYP2D6), midazolam (CYP3A) (all oral; day 6), intravenous midazolam (day 7), repaglinide (CYP2C8; day 8), and rosuvastatin (breast cancer resistance protein/organic anion transporter 3; day 9). Drug-drug interaction potential was evaluated in 17 of 30 enrolled volunteers. Napabucasin coadministration increased the area under the plasma concentration-time curve from time 0 extrapolated to infinity (geometric mean ratio [90% confidence interval]) of caffeine (124% [109.0%-141.4%]), intravenous midazolam (118% [94.4%-147.3%]), repaglinide (127% [104.7%-153.3%]), and rosuvastatin (213% [42.5%-1068.3%]) and decreased the area under the plasma concentration-time curve from time 0 extrapolated to infinity of dextromethorphan (71% [47.1%-108.3%]), bupropion (79% [64.6%-97.0%]), and hydroxybupropion (45% [15.7%-129.6%]). No serious adverse events/deaths were reported. Generally, napabucasin is not expected to induce/inhibit drug clearance to a clinically meaningful degree.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzofuranos/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Naftoquinonas/administração & dosagem , Proteínas de Neoplasias/metabolismo , Administração Oral , Adulto , Benzofuranos/farmacocinética , Bupropiona/administração & dosagem , Bupropiona/farmacocinética , Cafeína/administração & dosagem , Cafeína/farmacocinética , Dextrometorfano/administração & dosagem , Dextrometorfano/farmacocinética , Interações Medicamentosas , Feminino , Flurbiprofeno/administração & dosagem , Flurbiprofeno/farmacocinética , Regulação da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Voluntários Saudáveis , Humanos , Masculino , Midazolam/administração & dosagem , Midazolam/farmacocinética , Naftoquinonas/farmacocinética , Omeprazol/administração & dosagem , Omeprazol/farmacocinética , Rosuvastatina Cálcica/administração & dosagem , Rosuvastatina Cálcica/farmacocinética , Adulto Jovem
17.
Indian J Pharmacol ; 53(2): 108-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34100394

RESUMO

OBJECTIVES: Despite extensive caffeine use in preterm infants, the pharmacokinetics (PKs) data are limited because of the studies are complicated to do in these patients. This research was investigated the PK profile of two various dosages of caffeine in premature neonates. MATERIALS AND METHODS: The PK values of caffeine in premature neonates with Apnea were predicted by using all of computer-based simulation (Simcyp®), population-based PK, and modeling (P-Pharm®). We assayed the plasma levels of caffeine in two groups. The information was analyzed utilizing nonlinear mixed-effects modeling approach. The PK parameters were assessed simulating virtual clinical considers with subjects got 20 mg. kg-1 of caffeine in both groups, which was followed by a 5 mg. kg-1 once daily in Group 1 or 2.5 mg. kg-1 twice daily in Group 2. All statistical analysis was executed utilizing SSPS issue 19 and a P value of 0.05 was chosen significance. RESULTS: In the present study, the means CL, volume of distribution, and T1/2 of caffeine in preterm infants were 0.0476 L. h-1, 1.1081 L, 16.2284 h, respectively. Whereas our simulated means by Simcyp were 0.090 L. h-1, 1.841 L, and 14.653 h in Group 1 and 16.223 h in Group 2, respectively. CONCLUSIONS: There was overall good agreement between predicted and measured PK values in our study. This study provides an initial demonstration of Simcyp simulation advantage on anticipating of PK parameters.


Assuntos
Apneia/tratamento farmacológico , Cafeína/farmacocinética , Recém-Nascido Prematuro/metabolismo , Apneia/metabolismo , Cafeína/administração & dosagem , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Biológicos
18.
Clin Pharmacol Drug Dev ; 10(11): 1279-1289, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33951339

RESUMO

This pharmacokinetic (PK) drug-interaction trial investigated the effects of repeated dosing of a plant-derived pharmaceutical formulation of highly purified cannabidiol (CBD; Epidiolex in the United States and Epidyolex in Europe; 100 mg/mL oral solution) on caffeine clearance via modulation of cytochrome P450 (CYP) 1A2 activity in healthy adults. In this phase 1 open-label, fixed-sequence trial, all subjects received a single 200 mg caffeine dose and placebo on day 1. Subjects then titrated CBD from 250 mg once daily to 750 mg twice daily between days 3 and 11 and took 750 mg CBD twice daily between days 12 and 27. On day 26, subjects received a single 200-mg caffeine dose with their morning CBD dose. Plasma concentrations of caffeine and its CYP1A2-mediated metabolite, paraxanthine, were determined on days 1 and 26 and PK parameters derived using noncompartmental analysis. Safety was monitored throughout. Sixteen subjects enrolled, and 9 completed treatment. When caffeine was administered with steady-state CBD, caffeine exposure increased by 15% for Cmax and 95% for AUC0-∞ , tmax increased from 1.5 to 3.0 hours, and t1/2 increased from 5.4 to 10.9 hours compared with caffeine administered with placebo. Under the same conditions, paraxanthine exposure decreased by 22% for Cmax and increased by 18% for AUC0-∞ , tmax increased from 8.0 to 14.0 hours, and t1/2 increased from 7.2 to 13.7 hours. Overall, there were no unexpected adverse events; diarrhea was most common, and 6 subjects discontinued because of elevated liver transaminases. These data suggest that CBD is an inhibitor of CYP1A2.


Assuntos
Anticonvulsivantes/farmacologia , Cafeína/farmacocinética , Canabidiol/farmacologia , Estimulantes do Sistema Nervoso Central/farmacocinética , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Citocromo P-450 CYP1A2/metabolismo , Interações Medicamentosas , Teofilina/metabolismo , Adulto , Cafeína/metabolismo , Estimulantes do Sistema Nervoso Central/metabolismo , Feminino , Humanos , Masculino , Adulto Jovem
19.
CPT Pharmacometrics Syst Pharmacol ; 10(7): 782-793, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34053199

RESUMO

Physiologically based pharmacokinetic (PBPK) models have been proposed as a tool for more accurate individual pharmacokinetic (PK) predictions and model-informed precision dosing, but their application in clinical practice is still rare. This study systematically assesses the benefit of using individual patient information to improve PK predictions. A PBPK model of caffeine was stepwise personalized by using individual data on (1) demography, (2) physiology, and (3) cytochrome P450 (CYP) 1A2 phenotype of 48 healthy volunteers participating in a single-dose clinical study. Model performance was benchmarked against a caffeine base model simulated with parameters of an average individual. In the first step, virtual twins were generated based on the study subjects' demography (height, weight, age, sex), which implicated the rescaling of average organ volumes and blood flows. The accuracy of PK simulations improved compared with the base model. The percentage of predictions within 0.8-fold to 1.25-fold of the observed values increased from 45.8% (base model) to 57.8% (Step 1). However, setting physiological parameters (liver blood flow determined by magnetic resonance imaging, glomerular filtration rate, hematocrit) to measured values in the second step did not further improve the simulation result (59.1% in the 1.25-fold range). In the third step, virtual twins matching individual demography, physiology, and CYP1A2 activity considerably improved the simulation results. The percentage of data within the 1.25-fold range was 66.15%. This case study shows that individual PK profiles can be predicted more accurately by considering individual attributes and that personalized PBPK models could be a valuable tool for model-informed precision dosing approaches in the future.


Assuntos
Cafeína/farmacocinética , Citocromo P-450 CYP1A2/metabolismo , Modelos Biológicos , Adolescente , Adulto , Cafeína/administração & dosagem , Simulação por Computador , Relação Dose-Resposta a Droga , Feminino , Taxa de Filtração Glomerular , Humanos , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Medicina de Precisão , Adulto Jovem
20.
Skin Pharmacol Physiol ; 34(4): 203-213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34023823

RESUMO

INTRODUCTION: The skin is a major physical barrier to the environment, and thus, percutaneous delivery of active ingredients to the dermal target site faces a unique set of hurdles. The efficacy of these active ingredients is governed by their release into the underlying epidermal and dermal tissue, especially when administered topically. OBJECTIVE: The aim of this study was to understand if different physicochemical properties influence the skin penetration of active ingredients and the depth to which they penetrate into the dermis. METHODS: A microdialysis (MD) setup was used to compare the percutaneous penetration in superficial and deep implanted MD membranes in porcine skin. The precise MD membrane depth was determined using histological sectioning paired with microscopy, ultrasound, and a novel computed tomographic approach. RESULTS: In study A, the measured depth of the superficial and deep implanted MD membranes was compared using histological sectioning, ultrasound, and computed tomography. Experimental determination of the depth up to which penetration occurs was found to be crucial to percutaneous penetration studies. In study B, the lipophilic differences of the active ingredients and its influences on the penetration was tested using hydrophilic caffeine and lipophilic LIP1 as model compounds, which have an identical molecular weight with different lipophilic characteristics. It is assumed that the lipophilic characteristics of active ingredients influence their penetration and thus governs the concentration of these molecules reaching their target site. CONCLUSION: The transdermal penetration of caffeine was found to exceed that of LIP1 through the hydrophilic environment of the dermis. Thus, the findings of this study show that the precise MD dermis localization and the physicochemical properties, such as lipophilicity, influence the penetration rate of active ingredients and lay the foundation for creating optimized transdermal delivery systems.


Assuntos
Cafeína/farmacocinética , Epiderme/metabolismo , Microdiálise/métodos , Absorção Cutânea/fisiologia , Animais , Interações Hidrofóbicas e Hidrofílicas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...